lunes, 24 de octubre de 2011

Fases de la meiosis

Fases de la Meiosis

Para el estudio de la meiosis es necesario recordar que con carecer previo al proceso de división celular, se produce al igual que en la mitosis un proceso de duplicación del ADN, aún durante la interfase.

PROFASE I

En esta fase suceden los acontecimientos más característicos de la meiosis. La envoltura nuclear se conserva hasta el final de la fase que es cuando se desintegra, al mismo tiempo desaparece el nucleolo y se forma el huso mitótico.

Dada su duración y complejidad se subdivide en cinco etapas: leptoteno, zigoteno,  paquiteno, diploteno y diaciesis.

Leptoteno: Los cromosomas aparecen como largos filamentos que de trecho en trecho presentan unos gránulos: los cromómeros. Cada cromosoma ya está constituido por dos cromátidas, pero aún no se observan bien diferenciadas al microscopio óptico, y se encuentran unidos en diversos puntos a la envoltura nuclear.

Zigoteno: En esta etapa los cromosomas homólogos se aparean punto por punto en toda su longitud. Este apareamiento puede comenzar bien por el centro o por los extremos y continuar a todo lo largo. Cuando los homólogos se aparean cada gen queda yuxtapuesto con su homólogo.

Paquiteno: Los pares de cromosomas homólogos aparecen íntimamente unidos: bivalentes. Se puede ya observar que cada cromosoma tiene sus dos cromátidas. Mientras están estrechamente unidos tienen lugar roturas entre cromátidas próximas de cromosomas homólogos que intercambian material cromosómico. Este intercambio se llama entrecruzamiento o sobrecruzamiento (crossing-over) y supone una redistribución cromosómica del material genético.  Aunque los sobrecruzamientos se producen en esta fase no aún visibles y se apreciarán más tarde en forma de quiasmas.

 
Diploteno: Los bivalentes inician su separación, aunque se mantienen unidos por los puntos donde tuvo lugar el sobrecruzamiento, estas uniones reciben ahora el nombre de quiasmas y permiten ver los puntos en los que hubo sobrecruzamientos. En cada par de cromosomas homólogos pueden persistir uno o varios quiasmas, todo depende de cuántos sobrecruzamientos hayan tenido lugar a lo largo del bivalente.

Diacinesis: Las cromátidas aparecen muy condensadas preparándose para la metafase. La separación entre bivalentes persiste y permanecen los quiasmas.

 Al final de la profase la envoltura nuclear ha desaparecido totalmente y ya se ha formado el huso acromático.
  
METAFASE I 

Los bivalentes se disponen sobre el ecuador del huso, pero lo hacen de tal forma que los dos cinetocoros que tiene cada homólogo se orientan hacia el mismo polo, que es el opuesto hacia el que se orientan los dos cinetocoros del otro homólogo.
  
ANAFASE I 

Los cromosomas sólo presentan un centrómero para las dos cromátidas. Debido a esto, se separan a polos opuestos cromosomas completos con sus dos cromátidas. No se separan 2n cromátidas, sino n cromosomas dobles. Esta disyunción o separación de los cromosomas da lugar a una reducción cromosómica.  Como consecuencia, desaparecen los quiasmas.

 La distribución al azar de los cromosomas es una de las fuentes de variabilidad, ya que pueden producirse como consecuencia de este proceso una gran cantidad de gametos (2n, siendo n el número haploide).

 TELOFASE I

 Es una telofase normal pero que da lugar a dos células hijas cuyos núcleos tienen cada uno n cromosomas con dos cromátidas.
  
INTERFASE

Puede ser variable en su duración, incluso puede faltar por completo de manera que tras la telofase I se inicia sin interrupción la segunda división. En cualquier caso, nunca hay síntesis de ADN; es decir, es una interfase sin periodo S.

B) DIVISIÓN II

Es una mitosis normal en la que las dos células anteriores separan en la anafase II las cromátidas de sus n cromosomas. Surgen así 4 células con n cromátidas cada una.

SIGNIFICADO BIOLÓGICO DE LA MEIOSIS

A nivel genético. El sobrecruzamiento da lugar a nuevas combinaciones de genes en los cromosomas, es responsable de la recombinación genética. Por otra parte, cada una de las cuatro células finales dispone de un conjunto de n cromátidas que no es idéntico al de las otras. Tanto el sobrecruzamiento como el reparto de las cromátidas dependen del azar y dan lugar a que cada una de las cuatro células resultantes tenga una colección de genes diferentes. Estas colecciones de genes se verán más adelante sometidas a las presiones de la selección natural de tal forma que solamente sobrevivirán las mejores. A nivel genético, la meiosis es una de las fuentes de variabilidad de la información.

A nivel celular. La meiosis da lugar a la reducción cromosómica. Las células diploides se convierten en haploides.

A nivel orgánico. Las células haploides resultantes de la meiosis se van a convertir en las células sexuales reproductoras: los gametos o en células asexuales reproductoras: las esporas. La meiosis es un mecanismo directamente implicado en la formación de gametos y esporas. En muchos organismos los gametos llevan cromosomas sexuales diferentes y son los responsables de la determinación del sexo, en estos casos la meiosis está implicada en los procesos de diferenciación sexual.

lunes, 10 de octubre de 2011

Cariotipo humano

EL CARIOTIPO HUMANO
Cariotipo normal y de individuos con alteraciones cromosómicas.
         Introducción
          El cariotipo es el complemento cromosómico particular de un individuo y viene definido por el número y morfología de los cromosomas en la metafase mitótica. En la especie humana la dotación cromosómica es de 2n = 46 (22 pares de autosomas y un par de cromosomas sexuales).
En el cariotipo humano los cromosomas se ordenan de mayor a menor. Hay cromosomas grandes, medianos y pequeños. Al ordenar los comosomas se constituyen 7 grupos atendiendo no sólo al tamaño sino también a la forma de las parejas cromosómicas, dentro del cariotipo humano podemos encontrar cromosomas metacéntricos (tienen los dos brazos aproximadamente iguales en longitud), submetacéntricos (con un brazo más pequeño que otro) y acrocéntricos (con un brazo corto muy pequeño)
Utilizando técnicas de tinción estándar los cromosomas aparecen uniformemente teñidos en metafase y se clasifican en 7 grupos de la A a la G atendiendo a su longitud relativa y a la posición del centrómero que define su morfología.
Los autosomas se numeran del 1 al 22 ordenados por tamaños decrecientes y por la posición del centrómero. Los cromosomas sexuales X e Y constituyen un par aparte, independientemente del resto (por su tamaño, el cromosoma X se incluiría en el grupo C, y el Y, en el grupo G). De esta forma el cariotipo humano queda constituido así:
 Grupo              Pares cromosómicos         Características
A                     1, 2 y 3                           Cr. muy grandes casi metacéntricos (1 y 3 metacéntricos, pero 2 submetacéntrico)
B                     4 y 5                               Cr. grandes y submetacéntricos, con dos brazos muy diferentes en tamaño
C                     6, 7, 8, 9, 10, 11 y 12      Cr. medianos submetacéntricos
D                     13, 14 y 15                     Cr. medianos acrocéntricos con satélites
E                     16, 17 y 18                     Cr. pequeños, metacéntrico el 16 y submetacéntricos 17, 18
F                     19 y 20                           Cr. pequeños y metacéntricos
G                     21 y 22                           Cr. pequeños y acrocéntricos, con satélites.
X, Y                                                       El cr. X es parecido al 6. El Y, al grupo G, pero sin satélites.
(Todos los cromosomas autosómicos están ordenados en orden decreciente de tamaño, excepto el cromosoma 21 que ahora se sabe que es más pequeño que el 22)
 Sin embargo, atendiendo solamente a estos parámetros no es posible identificar inequívocamente cada par de cromosomas. Para ello es necesario utilizar diferentes técnicas de bandeo cromosómico. Los distintos patrones de bandas que se consiguen son constantes y específicos de cada técnica y determinan la distribución de regiones cromosómicas que se revelan positiva o negativamente según el método utilizado.
 

En 1956, Tijo y Levan determinaran el complemento cromosómico diploide del hombre (2n = 46). En 1959 Lejeune describió la primera cromosomopatía o enfermedad originada por una alteración cromosómica, el síndrome de Down producido por una trisomía del cromosoma 21. Desde entonces, la Citogenética Humana ha ido desarrollándose como una ciencia médica.
Hay dos tipos fundamentales de cromosomopatías:
 - Variaciones cromosómicas estructurales: afectan a la estructura del cromosoma en cuanto a la ordenación lineal de los genes. Aquí se incluyen deleciones, duplicaciones, inversiones y translocaciones.
 - Variaciones cromosómicas numéricas: afectan al número de cromosomas. Incluyen las poliploidías (triploidía: 3n; tetraploidía: 4n) y los diversos tipos de aneuploidía (trisomías: 2n+1; monosomías: 2n-1).
 Por otra parte, las anomalías cromosómicas pueden afectar a los autosomas o a los cromosomas sexuales.
 Las alteraciones cromosómicas más frecuentes en humanos son:
          Anomalías autosómicas:
 Síndrome de Down, por trisomía del cromosoma 21, translocación 21/21 o translocación 14/21.
Síndrome de Patau, por trisomía del par 13.
Síndrome de Edwards, por trisomía del par 18.
Síndrome Cri du Chat, por deleción parcial del brazo corto del cromosoma 5 (5p).
Síndrome de DiGeorge,  por deleción parcial del brazo largo del cromosoma 22 (22q11).
Cromosoma Filadelfia, formado por una translocación entre los cromosomas 9 y 22.
         Anomalías de los cromosomas sexuales:

Síndrome de Klinefelter, por una constitución XXY, XXXY, XXXXY.
Síndrome XYY, cromosoma Y extra en varones.
Síndrome de Turner, constitución X0.
Síndrome XXX, cromosoma X extra en mujeres.
         Actualmente se ha llegado a profundizar bastante en el conocimiento del cariotipo humano y se sabe que es relativamente frecuente la aparición de anomalías cromosómicas. Por ejemplo, cerca de un 25% de los abortos ocurridos antes de la octava semana de gestación tienen cariotipos anormales y un 0,5% de los recién nacidos presentan aneuploidías.
         Estas alteraciones no sólo pueden producir anomalías en el propio individuo portador sino que, por tratarse de anomalías genéticas, pueden transmitirse a la descendencia en el caso de que afecten a las células germinales. La detección anticipada de anomalías cromosómicas permite dictaminar las posibilidades de que la descendencia de una pareja portadora de una de ellas pueda presentarla o no. Para ello es preciso conocer el cariotipo de cada progenitor, lo que permite emitir un diagnóstico de su posible descendencia, con lo que el individuo será consciente de sus posibilidades.
El estudio del cariotipo tiene también su aplicación en el diagnóstico prenatal. Es posible determinar la constitución cromosómica del feto antes de su nacimiento pudiendo así observarse si presenta alguna anomalía cromosómica detectable. Hoy en día, el diagnóstico prenatal se practica a posteriori del inicio de la gestación y los resultados positivos suelen plantear conflictos éticos y emocionales.